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Propagation of strongly nonlinear
plane N-waves

By Y O S H I N O R I I N O U E AND T A K E R U Y A N O

Department of Engineering Science, Faculty of Engineering, Hokkaido University,
Sapporo 060, Japan
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Formation and evolution of N (-like) waves is studied without the restriction of low
amplitude, namely weak nonlinearity. To this end, the classical piston problem of
gasdynamics is investigated, in which the wave is radiated by a piston executing a
single cycle of harmonic oscillation into an inviscid perfect gas. The method of analysis
is based on the simple-wave theory up to the shock formation time, and beyond that
time on the numerical calculation by a high-resolution TVD upwind scheme. The
initial sinusoid-like wave profile is rapidly distorted as the wave propagates, and this
leads to the formation of head and tail shocks. The main effects of strong nonlinearity
may be listed as follows: (i) entropy production at shock fronts, (ii) the existence of
waves reflected from shocks, (iii) an asymmetric wave profile stemming from the
boundary condition at the source of the strongly nonlinear problem. As the result,
the strongly nonlinear wave possesses the following remarkable distinctive features,
in contrast to its counterpart in the weakly nonlinear regime. The tail shock is not
formed at the tail of the wave, and the expansion wave behind the head shock
has non-uniform intensity. The N (-like) wave propagates with some excess mass.
Thereby a region with low density, associated with the entropy production, appears
in the vicinity of the source.

1. Introduction
The N-wave is one of the most typical nonlinear waves in gasdynamics as well as in

nonlinear acoustics (for example, see Lighthill 1956, 1978; Whitham 1974; Rudenko &
Soluyan 1977; Sachdev 1987). The problem of sonic booms generated by an aircraft
moving at supersonic speed has much stimulated the progress of N-wave theory
(Lighthill 1971; Hayes 1971; Pierce 1993). In that case, a simplified version of the
axisymmetric N-wave applies. A large number of papers have been published on the
study of the N-wave (see below), but as far as the present authors know, the studies
in the literature are confined to the weakly nonlinear regime. In this paper we shall
deal with the formation and evolution of strongly nonlinear plane N-waves in the
case where we can neglect the dissipative effect everywhere except for discontinuities,
i.e. shock fronts. To be more precise, we assume that the wave is emitted into a
semi-infinite space filled with a uniform perfect gas, by the sinusoidal motion of an
infinite plate (piston) during a single period.

The wave phenomenon under consideration can be precisely designated in terms
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of the acoustic Mach number M and the acoustic Reynolds number Re:

M ≡ u0

c0

= O(1) and Re ≡ (γ + 1)c0u0

δω
� 1, (1.1a , b)

where u0 = aω is the maximum speed of the source (a is the displacement amplitude
of the source and ω is the angular frequency of oscillation), c0 is the speed of sound
in the initial undisturbed gas, γ is the ratio of specific heats for the perfect gas, and δ
is the diffusivity of sound (see Lighthill 1956), given as δ = ν[ 4

3
+ (ζ/η) + (γ−1)κ/ηcp]

(ν ≡ η/ρ0 is the kinematic viscosity, ρ0 is the density in the initial undisturbed gas,
η is the viscosity, ζ is the bulk viscosity, κ is the thermal conductivity, and cp is the
specific heat at constant pressure). Condition (1.1a) means that the wave concerned
is a strongly nonlinear one, and condition (1.1b) means that we can regard a shock
wave as a discontinuity and may ignore the dissipative effect elsewhere.

At present, the conventional weakly nonlinear theory in the limit as M → 0 has
been well-established for the N-wave problem. The N-wave, which appears at large
distances from a body of revolution or a two-dimensional body moving with a velocity
exceeding that of sound, has been studied by the following pioneers: Landau (1945),
DuMond et al. (1946), Friedrichs (1948), and Whitham (1950). One can analyse such
a problem using the method of characteristics together with the famous equal-areas
rule, because the acoustic Reynolds number is ideally considered as infinity in this
case. The effect of a finite acoustic Reynolds number on plane progressive waves can
be elucidated by solving the Burgers equation, which was first derived by Mendousse
(1953) for viscous fluids and by Lighthill (1956) for thermoviscous perfect gases.
The Burgers equation is solvable by the Cole–Hopf linearizing transformation, so
that various plane waves have so far been handled in this way. The propagation
of cylindrical and spherical outgoing waves is governed by generalized Burgers
equations. The asymptotic behaviour of spherical and cylindrical N-waves involved
with the phase after long time has been investigated in detail by making use of a
matched asymptotic approach (Crighton & Scott 1979) and the numerical method
(Sachdev, Tikekar & Nair 1986). In the laboratory, N-shaped shock pulses were
first generated in a circular pipe by a transducer of electro-magnetic induction type
(Nakamura & Takeuchi 1969).

In weakly nonlinear theory for high acoustic Reynolds number, the initial one-cycle
sinusoidal waveform is slowly distorted as the wave propagates and this leads to the
formation of two shocks in the far field (see §3). Then it evolves into the well-known
balanced N-wave whose amplitude is progressively attenuated, and whose length
progressively increases.

Few studies of the strongly nonlinear problem with M = O(1) have been done in
the field of gasdynamics (nonlinear acoustics). In a perfect fluid, the wave motion up
to the instant of shock formation is a simple wave. The problem of a simple wave
produced by arbitrary motion of a piston in a long tube was first solved by Earnshaw
(1860). The Earnshaw exact plane wave solution can readily be applied to a typical
problem in which the source begins to execute sinusoidal motion at the time t = 0
and then continues (Blackstock 1962).

As pointed out by Landau (1945), the appearance of reflected waves behind the
shock, together with entropy production at the shock front, render the simple-wave
assumption invalid after the shock formation time (see also Courant & Friedrichs
1948). In order to handle such a complex (strongly nonlinear) problem, the present
authors employ the Osher–Chakravarthy numerical scheme, a high-resolution upwind
finite difference scheme widely used nowadays in the field of gasdynamics (Osher &
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Figure 1. Schematic of the model: generation of the strongly nonlinear wave.

Chakravarthy 1986) and applied previously to the problem by us (Inoue & Yano
1990, 1993). It was shown that the asymptotic wave profile in the far field evolves into
a sawtooth-like wave, except for the leading phase in a half-cycle. In marked contrast
to the sawtooth wave in the weakly nonlinear theory, the waveform is unsymmetric
between the rarefactive phase and the compressive phase. We remark that this lack
of symmetry is due purely to the specification of u on the displaced piston. Also
the shocks eventually coalesce. The generated shock waves induce unidirectional and
almost steady streaming, which would continue to rarify the gas in the region near
the source. By the same numerical method, we have dealt with the strongly nonlinear
problem of a harmonically pulsating sphere (Yano & Inoue 1994) and that of a
harmonically oscillating circular piston mounted in an infinite plane wall (Yano &
Inoue 1993). Also, it is worth noting that the strongly nonlinear problem can be
solved analytically, that is, an exact solution has been obtained for the reflected wave
formed in a perfect gas when a plane compression front steepens into a shock (Glass,
Heuckroth & Molder 1961; Morfey & Sparrow 1993).

2. Formulation of the problem
We shall consider the strongly nonlinear propagation of plane waves generated by

the sinusoidal motion of an infinite plate (see figure 1). The gas is initially uniform
and at rest. At the time t∗ = 0 the plate begins executing the harmonic oscillation of
angular frequency ω and stops moving at t∗ = T ≡ 2π/ω.

The following non-dimensional variables are introduced:

t = ωt∗, x = kx∗, u =
u∗

c0

, ρ =
ρ∗

ρ0

, p =
p∗

γp0

, (2.1)

where k = ω/c0 is a typical wavenumber (c0 = (γp0/ρ0)
1/2), x∗ is the space coordinate

measured from the initial position of the plate, u∗ is the fluid velocity, ρ∗ is the density
of the gas, and p∗ is the pressure. The subscript 0 stands for the value at the initial
undisturbed state. Thanks to condition (1.1b), we may use, as the equations governing
the wave phenomena, Euler equations for a perfect gas:

∂q

∂t
+
∂f

∂x
= 0, (2.2)
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with

q =

 ρ
ρu
Et

 , f =

 ρu
p+ ρu2

(Et + p)u

 , Et ≡ 1
2
ρu2 +

p

γ − 1
. (2.3a–c)

Until a shock forms, no dissipative process exists and hence (2.3a–c), the conserva-
tion law of energy, can be reduced to be st + usx = 0, where s is the entropy per unit
mass of the gas. In this case, since the flow field remains homentropic and a Riemann
invariant becomes a constant in the wave region, the wave motion is governed by the
so-called simple-wave equation (Courant & Friedrichs 1948):

∂u

∂t
− βu∂u

∂y
= 0

(
y = t− x, β ≡ γ + 1

2

)
. (2.4)

The boundary condition on the plate is given by

u =

{
M sin t, 0 6 t < 2π
0, t < 0, t > 2π

at x = M(1− cos t). (2.5)

The initial condition is

u = 0 for x > 0 at t = 0. (2.6)

In §4, equation (2.4) will be solved exactly subject to conditions (2.5) and (2.6).
Once a shock forms, the above simple-wave assumption becomes invalid by virtue

of the presence of reflected waves behind the shock and the entropy production at
the shock front (see Courant & Friedrichs 1948). We should therefore employ the full
system (2.2) with (2.3) after the shock formation. This system omits effects of energy
dissipation due to viscosity and thermal conduction, even though kinetic energy is
in reality dissipated at the shock front. As is generally known, a shock solution
can, however, be represented as a discontinuity, across which the conventional shock
conditions must be satisfied. As the result, the thermoviscous effect is automatically
included in this system. In order to describe such a situation mathematically, we need
to introduce the concept of a weak solution to the system of equations (for example,
see Jeffrey 1976 and LeVeque 1990). We shall numerically solve the system (2.2) with
(2.3) so as to match the numerical solution with the exact solution obtained in §4,
using a method based on the high-resolution upwind scheme as mentioned in the
preceding section. The numerical procedure will in general choose a genuine solution
from among many weak solutions, which exist mathematically.

3. Weakly nonlinear theory
Let us here recapitulate the well-known results for the weakly nonlinear case with

M � 1 and Re� 1. The solution valid up to the distance of shock formation can be
written in parametric form as (cf. Soluyan & Khokhlov 1961)

v = sin ŷ, ŷ = y + σ sin ŷ, 0 6 ŷ 6 2π, (3.1)

where

v = u/M, y = t− x, σ = βMx. (3.2)

This shows that the radiated sound wave has a sinusoidal profile at σ = 0, and the
wave form distorts gradually as the wave advances, due to the weak nonlinearity.
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The shock formation distance xs and the shock formation time ts are given as

xfs = xrs = xs =
1

βM
, i.e. σ = 1, (3.3)

and

tfs =
1

βM
, trs =

1

βM
+ 2π ≈ tfs, (3.4a , b)

where the subscript fs indicates the front (leading) shock and the subscript rs the
rear (tail) shock. We remark that the front and the rear shocks emerge on y = 0
and y = 2π respectively. The solution (3.1) becomes invalid beyond the point σ = 1,
because it predicts that u(y, t) becomes triple-valued for σ > 1. However, with the aid
of the so-called equal-areas rule, we can easily analyse the propagation of a weakly
nonlinear wave after the shock formation (see Landau & Lifshitz 1959; Whitham
1974).

We readily find the velocity amplitude (jump) of the two shocks (see Blackstock
1966)

∆v =
2(σ − 1)1/2

σ
. (3.5)

After some simple calculation, we can derive the total length of the wave

∆x = 4

(
(σ − 1)1/2 + arcsin

1

(σ)1/2

)
. (3.6)

As is well known, we have a symmetric N-wave as the asymptotic form in the limit
as σ →∞.

Finally, some features of the weakly nonlinear waves may be listed as follows.
(i) For propagation over a few wavelengths, the wave substantially behaves in

accordance with the linear law. In the far field, the nonlinear effects accumulate
enough to distort the wave profile significantly and at last a shock emerges at σ = 1.

(ii) The wave profile of the particle velocity retains a symmetry between the
compressive phase (v > 0) and the rarefactive phase (v < 0), through the entire
process of wave propagation. The point of symmetry moves with constant speed. The
area under the compressive phase (or over the rarefactive phase) remains constant
through the entire process of wave propagation (see Appendix A).

(iii) The front shock is formed at the head of the wave and the rear shock at the
end of the wave. The strength of each shock attains a maximum at σ = 2. At long
distances (σ � 1), the velocity amplitude is attenuated in inverse proportion to σ1/2

and the wave length increases in proportion to σ1/2.
(iv) Streaming, due to wave propagation, is absent.
(v) In the weakly nonlinear theory, both the perturbation pressure and the per-

turbation density are equal to the velocity v in the normalized form.

4. Strongly nonlinear sound wave
If we limit ourselves to the wave propagation up to the shock formation time ts,

for the present problem of M = O(1), we can succeed in obtaining the analytical
exact solution to the simple-wave equation (2.4) under the boundary condition (2.5)
and the initial condition (2.6) (cf. Blackstock 1962; Inoue & Yano 1993). In this case,
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Figure 2. Velocity profiles just at the time when the front shock is formed. A strongly nonlinear
wave for M = 0.133 is drawn with a solid line, and the weakly nonlinear wave with a broken line, at
t = ts = 6.282. The latter waveform exhibits a point symmetry about the point (−y, u/M) = (−π, 0).
The solid circle denotes the position where the front shock appears.

the waveform distortion takes place rather rapidly, contrary to the weakly nonlinear
problem of small M in the preceding section.

The exact solution is expressible, through a parameter µ, as

u = M sin µ, (4.1)

y − [µ−M(1− cos µ)] = βM(µ− t) sin µ, with 0 6 µ 6 2π, µ 6 t 6 ts. (4.2)

In what follows, we shall be concerned with the case ts > 2π, i.e. M 6 1/[(γ+ 1)π] (cf.
(4.6)). Consequently, the source can radiate a localized sine-like wave before a shock
is formed (see figure 2). The area of the compressive phase or the rarefactive phase
remains constant during the wave propagation:

Sc ≡
∫ 0

π−2M

u(y, t) dy = 2M − π(2− β)

4
M2. (4.3)

Similarly, we have

Sr ≡
∣∣∣∣ ∫ π−2M

2π

u(y, t) dy

∣∣∣∣ = 2M +
π(2− β)

4
M2, (4.4)

and hence Sc < Sr . The lack of waveform symmetry is therefore due purely to
specification of u on the displaced piston (plate) x = X(t). This asymmetric feature is
essentially different from the symmetric wave profile in the weakly nonlinear theory.

It is clear from inspection of (4.2) that the leading shock is formed at the wave
front, so that we may deduce the same result that we have already obtained in the
weakly nonlinear theory, namely (3.3) and (3.4a).

After the first shock is formed, the simple-wave theory becomes invalid. However,
for moderate acoustic Mach number M, the front shock is initially weak. It does not
then significantly influence the following wave region before the rear shock forms, at
least. The formation time and formation distance of the rear shock can therefore be
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Figure 3. Comparison between the velocity and the excess pressure at the formation time of the
front shock: M = 0.2, γ = 1.4.

given as follows (see Appendix B):

xrs =

[
2γ

γ + 1
(ν2 − 1)1/2

{
ν2 − (γ + 1)(2γ + 1)

2γ2

}
− ν

γ

](
ν2 − γ + 1

2γ

)−1

, (4.5)

trs = 2π+ arcsin

(
1

ν

)
+

2γ

γ + 1
(ν2 − 1)1/2, (4.6)

with

ν ≡ cosec µrs = −

 1

2γM
+

((
1

2γM

)2

+
γ + 1

2γ

)1/2
 . (4.7)

In fact, our numerical calculation shows that formulas (4.5)–(4.7) hold to a fairly good
approximation, at least for M . 1.2 (when M = 1.2, estimated roughly, trs = 2π).
In this approximation the rear shock formation occurs at a point (xrs, trs) on a
characteristic identified by µ = µrs on which u = M/ν (< 0). The rear shock does not
emerge at the tail of the wave, in contrast to the weakly nonlinear case. In the limit
of weak nonlinearity as M → 0, we recognize that the results (4.5) and (4.6) reduce to
familiar formulas (3.3) and (3.4b) in §3. Moreover, it may be noted that solution (3.1)
in the weakly nonlinear theory can be produced approximately by replacing t by x in
(4.2) and representing (4.1) and (4.2) in terms of v and σ defined by (3.2) and then
taking the limit M → 0 in the resultant equation. We can also demonstrate that, up
to the shock formation time, there exists no mean mass flow (streaming) (see Inoue
& Yano 1993).

Profiles of velocity and perturbation pressure are depicted in figure 3, for the case
of M = 0.2, γ = 1.4, and t = tfs (≡ 1/βM = 4.167). As is obvious from the figure,
the two curves are distinct, unlike those of the weakly nonlinear wave (see §3). The
shock formation distances given by (3.3) and (4.5) are illustrated for varying M in
figure 4(a). This shows that, at least for M . 1.2, the formation distance of the
front shock is larger than that of the rear shock, with M fixed, whereas xfs = xrs
in the weakly nonlinear theory (see §3). The shock formation times given by (3.4a),
(3.4b), and (4.6) are illustrated for varying M in figure 4(b). These show that, as M
increases, the formation time of the rear shock becomes even shorter compared to
that extrapolated from the weakly nonlinear theory.
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Figure 4. (a) Shock formation distances xfs and xrs. The broken line in xrs denotes an unsupported
extension obeying formula (4.5). (b) Shock formation times tfs and trs. The result in the weakly
nonlinear theory is indicated with a thin solid line.
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Figure 5. Time evolution of the velocity profile, according to the numerical calculation: the
process up to the formation of an N-wave. M = 0.6, γ = 1.4; (xfs, tfs) = (1.389, 1.389),
(xrs, trs) = (1.035, 7.251). The broken line signifies the instantaneous location of the plate.
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Figure 6. Change of the waveform with distance, M = 0.6, γ = 1.4. Each profile represents the
temporal variation of the velocity observed at a fixed position. The result for the weakly nonlinear
theory is indicated with a thin solid line.

5. Formation and evolution of a strongly nonlinear N -wave
For strong nonlinearity with M = O(1), approximations such as the equal-areas

rule are not valid, so that we adopt a numerical method, based on a high-resolution
upwind difference scheme by Osher & Chakravarthy (1986). That is, we use the
scheme together with Osher’s flux-difference splitting (Osher & Solomon 1982). We
need not give the algorithm to construct the numerical scheme here, since it is
formulated at some length in Osher & Solomon (1982) and Osher & Chakravarthy
(1986). The mathematical proofs of the validity of the scheme are also included
in Osher & Chakravarthy (1986). The numerical calculation was performed on the
supercomputer HITAC S–3800 at Hokkaido University. In what follows, we shall
present the numerical results for the strongly nonlinear wave propagation under
consideration, contrasting them with the results for the weakly nonlinear theory
reviewed in §3.

5.1. Strongly nonlinear N-wave: evolution of the wave including the two shocks
and entropy production

The velocity profiles at discrete times are shown in figure 5, for the case of M = 0.6
and γ = 1.4. Owing to the strong nonlinearity, the wave radiated from the plate
develops into an N-like wave in the near field. At first sight, this might look like a
wave profile evolving as the well-known N-wave in the weakly nonlinear theory. In
order to make clearer contrast with the weakly nonlinear case, we examine changes
of the wave profile with time at fixed points (see figure 6). As may be seen from
figure 6, the form of the expansion wave between the two shocks is concave, while
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Figure 7. Entropy production that accompanies the formation and evolution of an N-wave:
M = 0.6, γ = 1.4. The colour bar indicates values of the entropy increments.

the counterpart in the weakly nonlinear wave is almost a straight line. At the early
evolutionary stage, the area of the rarefactive phase is large compared with the area
of the compressive phase, whereas the situation reverses later. As mentioned before, in
the weakly nonlinear theory the areas of these phases are equal and remain constant
during the wave motion. At a great distance, the initially strongly nonlinear wave
reduces to an ordinary N-wave with weak nonlinearity, but the resulting N-wave has
no symmetry with respect to the point where u = 0, in marked contrast to the weakly
nonlinear case.

In figure 7, encoded in colours, we present the space–time distribution of the
entropy which is generated at the front and rear shocks. Since we take a perfect gas,
the normalized entropy increment can be expressed as

s ≡ s∗ − s0
cv

= ln
γp

ργ
, (5.1)

where s0 is the entropy per unit mass of the gas at the initial uniform state. We may
here recall that the increase of entropy across a shock is given as

s = ln
(1 + z)

(
1 + [(γ − 1)/2γ] z

)γ(
1 + [(γ + 1)/2γ] z

)γ , z ≡ p2 − p1

p1

> 0. (5.2)

Here p1 and p2 are the pressures immediately in front of and behind the shock front,
and so we may regard z as the strength of the shock (for example, see Whitham 1974).
The entropy produced by the shock increases monotonically with the strength z. As is
evident from figure 7, the entropy is produced by each shock discontinuity, mainly by
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Figure 8. (a) Dependence of shock strength ∆v on the distance σ. (b) Paths of the front shock and
the rear shock in the (y, σ)-plane. The asymptotic forms are given by y = π± 2σ1/2.

strong shocks at the early stage. As is generally known, the entropy is carried along
by the gas flow, which is termed the entropy wave for convenience. Since the gas
returns to an almost quiescent state after the second shock has passed, the gas having
high entropy remains near the source (cf. §5.2). Finally we may remark that for weak
shocks expression (5.2) can be expanded in powers of z as s = [(γ2−1)/12γ2] z3 +O(z4)
(z � 1), so motivating the usual neglect of entropy changes in the weakly nonlinear
theory.

Figure 8(a) shows the change of the strength of the front and rear shocks with
propagation distance σ ≡ βMx. We here define the strength of the shock as ∆v ≡
∆u/M = (u2 − u1)/M, where u1 and u2 are the fluid velocities immediately in front of
and behind the shock respectively (cf. (3.2)). The formula (3.5) based on the weakly
nonlinear theory is designated by a thin solid line in figure 8(a). We see that for
the front shock the aforementioned shock strength is enhanced as the acoustic Mach
number M increases, whereas the result for the rear shock is the opposite. Clearly,
even a wave which is initially strongly nonlinear eventually enters a weakly nonlinear
regime, i.e. in the far field. In the weakly nonlinear theory, for the initial velocity
distribution of a single hump, the asymptotic formula for ∆v(σ) is given by

∆v ∼ (2A/σ)1/2 as σ →∞, (5.3)

where A is the normalized area of the initial hump (phase) (see Whitham 1974). It
seems that the asymptotic wave strength is somewhat affected by the asymmetric
wave profile at the initial stage.

In figure 8(b) we depict the paths of the front and rear shocks in the (y, σ)-plane,
where y = t− x and σ = βMx. The thin solid lines denote the paths according to the
weakly nonlinear theory given by (3.6). At the ‘same time’ the front shock with strong
nonlinearity is located ahead of that in the weakly nonlinear limit, whereas the rear
shocks are arranged in the reverse order in the y-direction. It may also be noted that
the shock velocity is given by us = (1 + βMdys/dσ)−1.
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Figure 9. The profiles of an N-wave at t = 14π: M = 1, γ = 1.4. (a) The fluid velocity u. (b) The
excess density ρ− 1. Clearly, a non-uniform region having low density exists behind the rear shock.

5.2. The state behind the rear shock

In the weakly nonlinear N-wave, after the rear shock passes the gas returns to its
original uniform rest state. The profiles of the velocity and the density of a strongly
nonlinear N-wave are shown in figure 9. The velocity u nearly vanishes behind the rear
shock. On the other hand the perturbation density (ρ−1) has a non-zero distribution
there, in marked contrast to the weakly nonlinear case. This fact is closely connected
with the entropy production mentioned in the preceding subsection. At a rough
estimate, we have the relation between the density and the entropy after a sufficiently
long time,

ρ(x) = exp
[
−s(x)/γ

]
. (5.4)

This shows that the gas is rarefied in this region, that is ρ(x) − 1 6 0. The reduced
mass is just counterbalanced by the positive excess mass accompanying the N wave
(see the following subsection).

5.3. Mass, momentum and energy of the N-wave and the region behind it

The total mass and energy remain constant after the source motion has ceased,
as can be estimated physically. On the other hand, integrating (2.3b), we have the
corresponding total momentum∫ ∞

0

ρu dx =

∫ ∞
0

ρu dx

∣∣∣∣
t=2π

+

∫ t

2π

[
p(0, t)− 1

γ

]
dt, (5.5)

where p(0, t) denotes the pressure on the plate located at x = 0, for t > 2π.
Figure 10(a) shows the numerical result for the change of the total excess mass

of the gas carried by the N-wave and that in the region behind the rear shock, as
functions of time:

mN(t) =

∫ xfs

xrs

(ρ− 1) dx, mR(t) =

∫ xrs

0

(ρ− 1) dx. (5.6a , b)

Here, xfs and xrs denote the locations of the front shock and the rear shock respec-
tively. The numerical result satisfies well the exact relation mN(t) + mR(t) = 0. This
means that the N-wave has asymmetric density profiles even in the weakly nonlinear
regime and asymmetric profiles for the other quantities, in marked contrast to the
symmetric wave profiles in the weakly nonlinear theory.

We depict the total excess energy of the N-wave and that of the region behind the
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Figure 10. (a) Curves of the excess mass of the N-wave, mN , defined by (5.6a) and of the remainder,
mR , defined by (5.6b), versus the time t/2π. mN + mR = 0. (b) Curves of the excess energy of the
N-wave, EN , defined by (5.7a) and of the remainder, ER , defined by (5.7b), versus the time t/2π:
M = 0.5, γ = 1.4. EN + ER = 0.815. (c) Curves of the momentum of the N-wave, MN , defined by
(5.11a) and of the remainder, MR , defined by (5.11b), versus the time t/2π: M = 0.5, γ = 1.4. The
total momentum of the entire field MN +MR decreases as time proceeds.

N-wave in figure 10(b):

EN(t) =

∫ xfs

xrs

(
Et −

1

γ(γ − 1)

)
dx, ER(t) =

∫ xrs

0

(
Et −

1

γ(γ − 1)

)
dx. (5.7a , b)

As the figure shows, EN(t) > 0, ER(t) 6 0, and EN(t) + ER(t) = 0.815 for t > trs,
when M = 0.5 and γ = 1.4. Now, it follows from the conservation law of energy
that EN(t) + ER(t) = ∆E = const. If the acoustic Mach number M is not too large,
we can evaluate the energy increment ∆E. Integrating (2.3c) from the position of
the plate, X(t) to ∞ with respect to x and then from 0 to 2π with respect to t,
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Figure 11. The loss of the kinetic energy of the N-wave due to the dissipation of energy at the
shock fronts: (a) (K.E.)N/1.574 × 10−2 (a strongly nonlinear wave with M = 0.1 and γ = 1.4), (b)
(K.E.)N/(πM

2/2) (the weakly nonlinear wave).

we obtain

∆E =

∫ ∞
0

(
Et −

1

γ(γ − 1)

)
dx

∣∣∣∣
t=2π

=

∫ 2π

0

p(X(t), t) u(X(t), t) dt, (5.8)

where we have used the Leibniz formula for the derivative of an integral. By making
use of (4.1) and (4.2), we can calculate ∆E as follows:

∆E =
πM2 Γ (2)

Γ

(
1

1− γ

)
Γ

(
γ + 1

2(1− γ)

)

×
∞∑
m=0

Γ

(
m− 1

γ − 1

)
Γ

(
m− γ + 1

2(γ − 1)

)
Γ (m+ 2)m!

(
(γ − 1)M

2

)2m

= πM2 F

(
1

1− γ ,
γ + 1

2(1− γ) , 2 ;
(γ − 1)2M2

4

)
, (5.9)

where Γ is the gamma function and F(a, b, c; z) is known as the Gauss hypergeometric
series. In the case γ = 1.4 (for air), we obtain a finite series,

∆E = π

(
M2 +

3

20
M4 +

3

103
M6 +

1

2× 105
M8

)
. (5.10)

This shows that ∆E = 0.815 for M = 0.5, which agrees with the numerical result (see
figure 10b).

Figure 10(c) shows that the total momentum of the whole fluid MN(t) + MR(t)
decreases with time, where

MN(t) =

∫ xfs

xrs

ρu dx, MR(t) =

∫ xrs

0

ρu dx. (5.11a , b)
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In particular, the total momentum of the N-wave, MN(t), shows a steady decrease at
the early stage, in marked contrast to the weakly nonlinear case in which it always
holds that

MN(t) =

∫ xfs

xrs

u dx = 0. (5.12)

As with the energy increment, we can evaluate exactly the momentum increment of
the gas gained during the motion of the source:∫ ∞

0

ρu dx

∣∣∣∣
t=2π

=

∫ 2π

0

(
p(X(t), t)− 1

γ

)
dt

=
2π

γ

[
F

(
γ

1− γ ,
γ + 1

2(1− γ) , 1 ;
(γ − 1)2M2

4

)
− 1

]
. (5.13)

For γ = 1.4, formula (5.13) is reduced to∫ ∞
0

ρu dx

∣∣∣∣
t=2π

= π

(
3

5
M2 +

3

102
M4 +

1

5× 103
M6

)
, (5.14)

which takes the value 0.477 for M = 0.5, in close agreement with the numerical result.
In figure 11 we depict the change of kinetic energy with time, for a strongly

nonlinear N-wave with M = 0.1 and γ = 1.4 and the weakly nonlinear N-wave (see
Appendix C). The curve represents the kinetic energy at the time τ = βMt divided
by the kinetic energy at the initial time, say, t = 2π. In due course, the curve of
the strongly nonlinear wave approaches asymptotically that of the weakly nonlinear
wave, as the former wave enters the weakly nonlinear regime.

6. Conclusion
In this final section, we shall briefly summarize the results of the investigation

which we have made on the strongly nonlinear N-wave in §§4 and 5. Thereby we shall
see that the present strongly nonlinear N-wave has intriguing distinctive features, as
contrasted with the well-known weakly nonlinear N-wave, that is, the N-wave in the
conventional sense.

(i) Owing to the rapid waveform distortion due to the strong nonlinearity, shock
waves appear in the near field. The first (front) shock is formed at σ ≡ βMx = 1, like
in the weakly nonlinear case, whereas the second (rear) shock is formed at a shorter
distance than the first shock, for M . 1.2. The second shock emerges after a timelag
shorter than 2π after the first shock forms (cf. (i) in §3).

(ii) The wave profile does not have any symmetry between the compressive phase
and the rarefactive phase through the entire process of wave propagation. Before
the shock formation time, the velocity profile does not show a symmetry between
the compressive phase and the rarefactive phase, as is evident from (4.3) and (4.4)
(for M < 1/[(γ + 1)π]). The wave profile continues to be asymmetric after the shock
formation time. For instance, at the early stage of an N-wave, the expansion wave is
very strong just behind the front shock and its strength decreases rapidly toward the
rear shock. At large distances, the wave is reduced to an ordinary but asymmetric
N-wave (cf. (ii) in §3).

(iii) The front shock is formed at the head of the wave but unlike the weakly
nonlinear N-wave the rear shock is not formed at the tail of the wave. For the same
σ, the ‘normalized’ strength of the strong shock, ∆v ≡ ∆u/M, is larger than that of
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the weak front shock, whereas the situation is reversed for the rear shock (see figure
8a). At large distances, however, each strength approaches the strength of the weakly
nonlinear limit. At the ‘same’ time τ = βMt, both the strong front and rear shocks
are located ahead of the front and rear shocks in the weakly nonlinear limit (cf. (iii)
in §3).

(iv) Streaming caused by the wave propagation is weak compared with the stream-
ing occurring in the strongly nonlinear sawtooth wave. As mentioned in §5 the fluid,
as a whole, possesses some momentum and hence streaming in the region behind the
rear shock after the strong N-wave has passed. However, it can approximately be
neglected on a local scale (cf. (iv) in §3; see also Appendix D).

(v) The increment of entropy caused by strong shocks remains near the source, be-
cause the fluid would be almost at rest there after the N-wave has passed. This means
that the density has a non-uniform distribution. Indeed, the numerical calculation
supports this estimation well.

(vi) Some excess mass is carried along by the N-wave, as figure 10(a) shows. In
the weakly nonlinear regime it can be deduced directly from the asymmetry of the
waveform of the velocity.

Appendix A. Area-preserving propagation
On account of the symmetry of the wave profiles, it is sufficient to prove that the

area under the compressive phase remains constant during the wave motion. Up to
the shock formation, we can easily show it as follows:

Sc ≡
∫ π

0

v dy =

∫ π

0

sin ŷ(1− σ cos ŷ) dŷ = 2. (A 1)

We see that the result (A1) is also valid after the shock formation, thanks to the
equal-areas rule. It may be noted that, strictly speaking, this property does not pertain
to the N-wave solution of the Burgers equation (the detailed discussion is found in
Whitham 1974).

Appendix B. Formation time and distance of the rear shock
The shock formation time must satisfy (∂u/∂x)t = −∞. We differentiate (4.2) with

respect to x, with t being fixed, and then see that the condition yields

t = µ+
1

β cos µ

[
1

M
+ (β − 1) sin µ

]
. (B 1)

Moreover, to seek the shock formation time, we should impose the additional condi-
tion that the right-hand side of (B1) takes a minimum:

1
2
(γ + 1) sin2 µrs − (1/M) sin µrs − γ = 0. (B 2)

From (B2) we directly have (4.7). On the other hand, by making use of (B2), we can
rewrite (B1) as

trs = µrs −
2γ

γ + 1
cot µrs = µrs +

2γ

γ + 1
[(cosecµrs + 1)(cosec µrs − 1)]1/2, (B 3)

and using (4.7) we can readily find the shock formation time given by formula (4.6).
In order to determine the shock formation distance, we may simply put t = trs and
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µ = µrs in (4.2):

xrs = M(1− cos µrs) + (trs − µrs)(1 + βM sin µrs)

= M

[
1 +

(ν2 − 1)1/2

ν
+

2γ

γ + 1
(ν2 − 1)1/2

(
1

M
+
γ + 1

2

1

ν

)]
. (B 4)

An easy calculation shows that

M = −ν
γ

(
ν2 − γ + 1

2γ

)−1

. (B 5)

Thus, we can bring (B4) into the expression (4.5) in terms of a parameter ν.

Appendix C. Total kinetic energy of a weakly nonlinear N -wave
We may confine ourselves to examining the change of the total kinetic energy of

the wave concerned after the shock formation. We can easily evaluate it with the aid
of (3.1) and the equal-areas rule as follows:

(K.E.)N ≡
∫ xfs

xrs

1
2
u2 dx = 1

2
M2

∫ xfs

xrs

v2 dx = 1
2
M2

∫ ŷrs

ŷfs

sin2 ŷ(1− σ cos ŷ) dŷ

=


1
2
M2

[
π− arcsin

2(σ − 1)1/2

σ
+

10

3

(σ − 1)1/2(σ − 2
5
)

σ2

]
, 1 6 σ 6 2

1
2
M2

[
arcsin

2(σ − 1)1/2

σ
+

10

3

(σ − 1)1/2(σ − 2
5
)

σ2

]
, 2 < σ,

(C 1)

where ŷfs and ŷrs denote the y-coordinates of the front shock and the rear shock such
that sin ŷfs = 2(σ − 1)1/2/σ and sin ŷrs = −2(σ − 1)1/2/σ (see (3.1) and (3.5)). In the
limit as σ →∞, we have the asymptotic formula

(K.E.)N = 8
3
M2σ−1/2. (C 2)

Appendix D. Streaming in the one-dimensional problem
We can express the streaming, i.e. a time-averaged mass flux density 〈ρu〉 as follows

(see Inoue & Yano 1993):

〈ρu〉 ≡ 1

2π

∫ t+2π

t

ρ(x, t)u(x, t) dt = − 1

2π

∫ x

0

[ρ(x, t+ 2π)− ρ(x, t)] dx, (D 1)

where we have used the fact that 〈ρu〉x=0 for the present piston problem. This shows
that the streaming has an immediate connection with the periodicity of the wave
phenomenon concerned.
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